62 research outputs found

    Computational fluid dynamics drag prediction: Results from the Viscous Transonic Airfoil Workshop

    Get PDF
    Results from the Viscous Transonic Airfoil Workshop are compared with each other and with experimental data. Test cases used include attached and separated transonic flows for the NACA 0012 airfoil. A total of 23 sets of numerical results from 15 different author groups are included. The numerical method used vary widely and include: 16 Navier-Stokes methods, 2 Euler boundary layer methods, and 5 potential boundary layer methods. The results indicate a high degree of sophistication among the numerical methods with generally good agreement between the various computed and experimental results for attached or moderately separated cases. The agreement for cases with larger separation is only fair and suggests additional work is required in this area

    Numerical solution of the Navier-Stokes equations about three-dimensional configurations: A survey

    Get PDF
    The numerical solution of the Navier-Stokes equations about three-dimensional configurations is reviewed. Formulational and computational requirements for the various Navier-Stokes approaches are examined for typical problems including the viscous flow field solution about a complete aerospace vehicle. Recent computed results, with experimental comparisons when available, are presented to highlight the presentation. The future of Navier-Stokes applications in three-dimensions is seen to be rapidly expanding across a broad front including internal and external flows, and flows across the entire speed regime from incompressible to hypersonic applications. Prospects for the future are described and recommendations for areas of concentrated research are indicated

    Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    Get PDF
    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved

    On Approximate Factorization Schemes for Solving the Full Potential Equation

    Get PDF
    An approximate factorization scheme based on the AF2 algorithm is presented for solving the three-dimensional full potential equation for the transonic flow about isolated wings. Two spatial discretization variations are presented, one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The present algorithm utilizes a C-H grid topology to map the flow field about the wing. One version of the AF2 iteration scheme is used on the upper wing surface and another slightly modified version is used on the lower surface. These two algorithm variations are then connected at the wing leading edge using a local iteration technique. The resulting scheme has improved linear stability characteristics and improved time-like damping characteristics relative to previous implementations of the AF2 algorithm. The presentation is highlighted with a grid refinement study and a number of numerical results

    Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    Get PDF
    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation

    Numerical solution of the full potential equation using a chimera grid approach

    Get PDF
    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation

    Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Get PDF
    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane

    Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Get PDF
    Helicopter aeromechanics encompasses a highly vortical flow field. The vortices generated at each blade tip contain unsteady, complex, three-dimensional structures, which interact with each other, other blades, the fuselage and various components of the helicopter. It is crucial to understand vortex kinematics and their subsequent dynamic evolution. Much research has been devoted to the understanding of helicopter vortex dynamics, including a number of experimental studies.1-6 In May 2010 Particle Image Velocimetry (PIV) measurements of a full-scale UH-60A rotor were acquired in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel.1 These measurements were taken at a plane just downstream of the advancing blade in the vicinity of the blade tipthe so-called PIV plane. The resulting PIV data were then processed using an ensemble-average approach to create graphical representations of the vortical wake velocity and vorticity fields, which, in turn, have enhanced the understanding of rotorcraft vortical wake flow field physics and have provided a more detailed validation of vortical wake computer simulations.7 A common approach used to analyze flow field features is to compute and plot color contour maps of various scalar quantities such as pressure, velocity magnitude and vorticity magnitude. For example, the color map of the vorticity magnitude is typically used to determine vortical flow structure. With this approach the vortex core may appear larger or smaller, depending on the contour levels that are selected. Thus, the resulting visualization is sensitive to user-specified contour levels. For vortex core radius measurements, it is more accurate to calculate the vortex core radius using the cross-flow velocity profile across the vortex core. The task of extracting the cross-flow velocity profile can be time consuming with existing tools since the user needs to manually select the core center then specify sampling points along the profile axis. The task becomes even more challenging when the associated grid system uses AMR (Adaptive Mesh Refinement) where the profile axis could span multiple grid blocks. There are a number of existing techniques for profiling of vortex core attributes;8-9 however, these techniques are not fully automatic in that the user still needs to select the vortex core center to compute the cross-flow velocity profile. The present study introduces a new color map scheme that is based on the vortex core radius, which is fully automatic and does not require user intervention. Analysis and visualization of blade tip vortices on the PIV plane using the proposed new color map scheme are described in Section II. The new approach is evaluated using two case studies, which are described in Section III. The paper ends with a summary in Section IV

    Effect of Turbulence Modeling on Hovering Rotor Flows

    Get PDF
    The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included
    corecore